Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Virology ; 595: 110081, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38599030

RESUMO

Parvoviruses are known to be significant viral pathogens that infect a wide range of species globally. However, little is known about the parvoviruses circulating in Australian birds, including yellow canaries. Here, we present four parvoviral sequences including three novel parvoviruses detected from 10 yellow canaries (Crithagra flaviventris), named canary chaphamaparvovirus 1 and -2 (CaChPV1 and CaChPV2), canary dependoparvovirus 1 and -2 (CaDePV1 and CaDePV2). The whole genome sequences of CaChPV1, CaChPV2, CaDePV1, and CaDePV2 showed the highest identity with other parvoviruses at 76.4%, 75.9%, 84.0%, and 59.1%, respectively. Phylogenetic analysis demonstrated that CaChPV1 and CaChPV2 were clustered within the genus Chaphamaparvovirus. Meanwhile, CaDePV1 and CaDePV2 fall within the genus Dependoparvovirus and have the closest evolutionary relationship to the bird-associated dependoparvoviruses. Overall, this study enriched our understanding of the genetic diversity among avian parvoviruses within the Parvoviridae family.

2.
J Virol Methods ; 326: 114907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432358

RESUMO

Adenovirus protein VII (pVII) is a highly basic core protein, bearing resemblance to mammalian histones. Despite its diverse functions, a comprehensive understanding of its structural intricacies and the mechanisms underlying its functions remain elusive, primarily due to the complexity of producing a good amount of soluble pVII. This study aimed to optimise the expression and purification of recombinant pVII from four different adenoviruses with a simple vector construct. This study successfully determined the optimal conditions for efficiently purifying pVII across four adenovirus species, revealing the differential preference for bacterial expression systems. The One Shot BL21 Star (DE3) proved favourable over Rosetta 2 (DE3) pLysS with consistent levels of expression between IPTG-induced and auto-induction. We demonstrated that combining chemical and mechanical cell lysis is possible and highly effective. Other noteworthy benefits were observed in using RNase during sample processing. The addition of RNase has significantly improved the quality and quantity of the purified protein as confirmed by chromatographic and western blot analyses. These findings established a solid groundwork for pVII purification methodologies and carry the significant potential to assist in unveiling the core structure of pVII, its arrangement within the core, DNA condensation intricacies, and potential pathways for nuclear transport.


Assuntos
Infecções por Adenoviridae , Proteínas do Core Viral , Animais , Proteínas do Core Viral/genética , Adenoviridae/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ribonucleases/metabolismo , Mamíferos/metabolismo
3.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261399

RESUMO

Adenovirus protein VII (pVII) plays a crucial role in the nuclear localization of genomic DNA following viral infection and contains nuclear localization signal (NLS) sequences for the importin (IMP)-mediated nuclear import pathway. However, functional analysis of pVII in adenoviruses to date has failed to fully determine the underlying mechanisms responsible for nuclear import of pVII. Therefore, in the present study, we extended our analysis by examining the nuclear trafficking of adenovirus pVII from a non-human species, psittacine siadenovirus F (PsSiAdV). We identified a putative classical (c)NLS at pVII residues 120-128 (120PGGFKRRRL128). Fluorescence polarization and electrophoretic mobility shift assays demonstrated direct, high-affinity interaction with both IMPα2 and IMPα3 but not IMPß. Structural analysis of the pVII-NLS/IMPα2 complex confirmed a classical interaction, with the major binding site of IMPα occupied by K124 of pVII-NLS. Quantitative confocal laser scanning microscopy showed that PsSiAdV pVII-NLS can confer IMPα/ß-dependent nuclear localization to GFP. PsSiAdV pVII also localized in the nucleus when expressed in the absence of other viral proteins. Importantly, in contrast to what has been reported for HAdV pVII, PsSiAdV pVII does not localize to the nucleolus. In addition, our study demonstrated that inhibition of the IMPα/ß nuclear import pathway did not prevent PsSiAdV pVII nuclear targeting, indicating the existence of alternative pathways for nuclear localization, similar to what has been previously shown for human adenovirus pVII. Further examination of other potential NLS signals, characterization of alternative nuclear import pathways, and investigation of pVII nuclear targeting across different adenovirus species is recommended to fully elucidate the role of varying nuclear import pathways in the nuclear localization of pVII.


Assuntos
Siadenovirus , Transporte Ativo do Núcleo Celular , Transporte Proteico , Sinais de Localização Nuclear/genética , Carioferinas
4.
Microbiol Spectr ; 12(1): e0305223, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38047696

RESUMO

IMPORTANCE: The impact of circulating viruses on the critically endangered, orange-bellied parrot (OBP) population can be devastating. The OBP already faces numerous threats to its survival in the wild, including habitat loss, predation, and small population impacts. Conservation of the wild OBP population is heavily reliant on supplementation using OBPs from a managed captive breeding program. These birds may act as a source for introduction of a novel disease agent to the wild population that may affect survival and reproduction. It is, therefore, essential to monitor and assess the health of OBPs and take appropriate measures to prevent and control the spread of viral infections. This requires knowledge of the existing virome to identify novel and emerging viruses and support development of appropriate measures to manage associated risk. By monitoring and protecting these animals from emerging viral diseases, we can help ensure their ongoing survival and preserve the biodiversity of our planet.


Assuntos
Papagaios , Viroses , Vírus , Animais , Viroma , Viroses/epidemiologia , Viroses/veterinária , Austrália/epidemiologia
5.
Vet Med Sci ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151844

RESUMO

BACKGROUND: Infectious bronchitis virus (IBV) is classified as a highly contagious viral agent that causes acute respiratory, reproductive and renal system pathology in affected poultry farms. Molecular and serological investigations are crucial for the accurate diagnosis and management of IBV. OBJECTIVES: The purpose of this study was to determine the seroprevalence of IBV and to characterise the circulating IBV in poultry farms in Sabah Province, Malaysia. METHODS: To determine IBV antibodies, a total of 138 blood samples and 50 organ samples were collected from 10 commercial broiler flocks in 3 different farms by using the enzyme-linked immunosorbent assay (ELISA) (IDEXX Kit) and reverse transcription-polymerase chain reaction (RT-PCR) followed by sequencing. RESULTS: A total of 94.2% (130/138) of the samples were seropositive for IBV in the vaccinated flock, and 38% (52/138) of the birds was the IBV titre for infection. The selected seropositive samples for IBV were confirmed by RT-PCR, with 22% (11/50) being IBV positive amplified and sequenced by targeted highly conserved partial nucleocapsid (N) genes. Subsequently, phylogenetic analysis constructed using amplified sequences again exposed the presence of Connecticut, Massachusetts, and Chinese QX variants circulating in poultry farms in Sabah, Malaysia. CONCLUSIONS: The unexpectedly increasing mean titres in serology indicated that post infection of IBV and highly prevalent IBV in selected farms in this study. The sequencing and phylogenetic analysis revealed the presence of multiple IBV variants circulating in Malaysian chicken farms in Sabah, which further monitoring of genetic variation are needed to better understand the genetic diversity.

6.
Viruses ; 15(10)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37896802

RESUMO

Pigeon circovirus (PiCV) is considered to be genetically diverse, with a relatively small circular single-stranded DNA genome of 2 kb that encodes for a capsid protein (Cap) and a replication initiator protein (Rep). Australasia is known to be the origin of diverse species of the Order Columbiformes, but limited data on the PiCV genome sequence has hindered phylogeographic studies in this species. To fill this gap, this study was conducted to investigate PiCV in 118 characteristic samples from different birds across Australia using PCR and sequencing. Eighteen partial PiCV Rep sequences and one complete PiCV genome sequence were recovered from reservoir and aberrant hosts. Phylogenetic analyses revealed that PiCV circulating in Australia was scattered across three different subclades. Importantly, one subclade dominated within the PiCV sequenced from Australia and Poland, whereas other PiCV sequenced in this study were more closely related to the PiCV sequenced from China, USA and Japan. In addition, PiCV Rep sequences obtained from clinically affected plumed whistling duck, blue billed duck and Australian magpie demonstrated natural spillover of PiCV unveiled host generalist characteristics of the pigeon circovirus. These findings indicate that PiCV genomes circulating in Australia lack host adapted population structure but demonstrate natural spillover infection.


Assuntos
Doenças das Aves , Infecções por Circoviridae , Circovirus , Animais , Columbidae , Circovirus/genética , Filogenia , Austrália/epidemiologia , Reação em Cadeia da Polimerase , Genoma Viral
7.
Viruses ; 15(10)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896884

RESUMO

Cutaneous plantar papillomas are a relatively common lesion of wild psittacine birds in Australia. Next-generation sequencing technology was used to investigate the potential aetiologic agent(s) for a plantar cutaneous papilloma in a wild rainbow lorikeet (Trichoglosis moluccanus). In the DNA from this lesion, two novel viral sequences were detected. The first was the partial sequence of a herpesvirus with the proposed name, psittacid alphaherpesvirus 6, from the Mardivirus genus of the family alphaherpesviruses. This represents the first mardivirus to be detected in a psittacine bird, the first mardivirus to be detected in a wild bird in Australia, and the second mardivirus to be found in a biopsy of an avian cutaneous papilloma. The second virus sequence was a complete sequence of a hepadnavirus, proposed as parrot hepatitis B genotype H (PHBV-H). PHBV-H is the first hepadnavirus to be detected in a wild psittacine bird in Australia. Whether other similar viruses are circulating in wild birds in Australia and whether either of these viruses play a role in the development of the plantar papilloma will require testing of biopsies from similar lesions and normal skin from other wild psittacine birds.


Assuntos
Alphaherpesvirinae , Avihepadnavirus , Doenças das Aves , Herpesviridae , Papiloma , Papagaios , Animais , Herpesviridae/genética , Vírus Oncogênicos , Papiloma/veterinária , Poliésteres
8.
Virology ; 588: 109904, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37856912

RESUMO

Aviadenoviruses are widespread in wild birds but rarely cause disease in nature. However, when naïve species are exposed to poultry or aviaries, aviadenoviruses can lead to disease outbreaks. This study characterised a novel aviadenovirus infection in a native Australian bird, the tawny frogmouth (Podargus strigoides) during an outbreak investigation. The identified complete genome of aviadenovirus, named tawny frogmouth aviadenovirus A (TwAviAdV-A) was 41,175 bp in length containing 52 putative genes. TwAviAdV-A exhibits the common aviadenovirus genomic organisation but with a notable monophyletic subclade in the phylogeny. The TwAviAdV-A virus was hepatotrophic and the six frogmouths presented to the wildlife hospitals in South Eastern Queensland most commonly exhibited regurgitation (in four frogmouths). Three were died or euthanized, two recovered, and one showed no signs. The detection of TwAviAdV-A in frogmouths coming into care re-emphasizes the need for strict biosecurity protocols in wildlife hospitals and care facilities.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Doenças das Aves Domésticas , Animais , Austrália/epidemiologia , Animais Selvagens , Aves , Filogenia , Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/veterinária , Doenças das Aves Domésticas/epidemiologia
9.
Microb Genom ; 9(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37665208

RESUMO

Pantoea stewartii, a plant pathogen, is primarily transmitted through contaminated seeds and insect vectors, with the corn flea beetle (Chaetocnema pulicaria) being the primary carrier. P. stewartii is a bacterium belonging to the order Enterobacterales and can lead to crop diseases that have a significant economic impact worldwide. Due to its high potential for spread, P. stewartii is classified as a quarantine organism in numerous countries. Despite its impact on agriculture, the limited genome sequences of P. stewartii hamper understanding of its pathogenicity and host specificity, and the development of effective control strategies. In this study, a P. stewartii strain (C10109_Jinnung) was discovered in the faecal matter of the Critically Endangered western ground parrot/kyloring (Pezoporus flaviventris) in Australia, which to our knowledge is the first reported P. stewartii genome from a bird source. Whole-genome sequencing and phylogenomic analysis of strain C10109_Jinnung, obtained from a captive psittacine, provides new insights into the genetic diversity and potential transmission route for the spread of P. stewartii beyond insects and plants, where P. stewartii is typically studied. Our findings provide new insights into the potential transmission route for spread of P. stewartii and expand the known transmission agents beyond insects and plants. Expanding the catalogue of P. stewartii genomes is fundamental to improving understanding of the pathogenicity, evolution and dissemination, and to develop effective control strategies to reduce the substantial economic losses associated with P. stewartii in various crops and the potential impact of endangered animal species.


Assuntos
Pantoea , Papagaios , Animais , Pantoea/genética , Austrália , Produtos Agrícolas
10.
Viruses ; 15(9)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37766268

RESUMO

Lumpy skin disease (LSD), a current global concern, causes economic devastation in livestock industries, with cattle and water buffalo reported to have higher morbidity and lower mortality rates. LSD is caused by lumpy skin disease virus (LSDV), a member of the Poxviridae family. It is an enzootic, rapidly explorative and sometimes fatal infection, characterized by multiple raised nodules on the skin of infected animals. It was first reported in Zambia in 1929 and is considered endemic in Africa south of the Sahara desert. It has gradually spread beyond Africa into the Middle East, with periodic occurrences in Asian and East European countries. Recently, it has been spreading in most Asian countries including far East Asia and threatens incursion to LSD-free countries. Rapid and accurate diagnostic capabilities, virus identification, vaccine development, vector control, regional and international collaborations and effective biosecurity policies are important for the control, prevention, and eradication of LSD infections. This review critically evaluates the global burden of LSD, the chronological historical outbreaks of LSD, and future directions for collaborative global actions.


Assuntos
Doença Nodular Cutânea , Animais , Bovinos , Humanos , Doença Nodular Cutânea/epidemiologia , Doença Nodular Cutânea/prevenção & controle , Surtos de Doenças , África do Norte , Ásia/epidemiologia , Búfalos , Zâmbia
11.
Microbiol Spectr ; : e0119323, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750697

RESUMO

Avipoxviruses are considered as significant viral pathogen infecting a wide range of domestic and wild bird species globally, yet the majority of avipoxviruses that infect the wild bird species remain uncharacterized and their genetic diversities remain unclear. In this study, we present a novel pathogenic avipoxvirus isolated from the cutaneous pox lesions of a wild oriental turtle dove (Streptopelia orientalis), tentatively named as turtle dovepox virus (TDPV). The avipoxvirus was isolated by using the chorioallantoic membranes of specific pathogen-free chicken embryos which showed characteristic focal pock lesions, followed by cytopathic effects in host cells infected with oriental turtle dovepox virus. An effort in sequencing the whole genome of the poxvirus using next-generation sequencing was given, and the first whole genome sequence of TDPV was obtained. The TDPV genome was 281,386 bp in length and contained 380 predicted open reading frames (ORFs). While 336 of the predicted ORFs showed homology to other characterized avipoxviruses, the other 44 ORFs were unique. Subsequent phylogenetic analyses showed that the novel TDPV shared the closest genetic evolutionary linkage with the avipoxviruses isolated from pigeon in South Africa and India, of which the TDPV genome had the highest sequence similarity (92.5%) with South African pigeonpox virus (FeP2). In conclusion, the sequenced TDPV is significantly different from any other avipoxviruses isolated from avian or other natural host species considering genomic architecture and observed sequence similarity index. Thus, it likely should be considered a separate species. IMPORTANCE Over the past few decades, avipoxviruses have been found in a number of wild bird species including the oriental turtle dove. However, there is no whole genome sequence information on avipoxviruses isolated from oriental turtle dove, leaving us unclear about the evolutionary linkage of avipoxviruses in oriental turtle dove and other wild bird species. Thus, we believe that our study makes a significant contribution because it is the first report of the whole genome sequence of TDPV isolated from a wild oriental turtle dove, which enriches the genomic information of the genus Avipoxvirus, furthermore, contributes to tracking the genetic evolution of avipoxviruses-infected oriental turtle dove species.

12.
Microbiol Resour Announc ; 12(5): e0136722, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37014209

RESUMO

This study reports the complete mitochondrial genome sequence of an Australian little crow (Corvus bennetti). The circular genome has a size of 16,895 bp and contains 13 protein-coding genes, 22 tRNA genes, and two rRNA genes. The study provides a reference mitochondrial genome of a little crow for further molecular studies.

13.
Vet Microbiol ; 280: 109704, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840991

RESUMO

Chlamydia psittaci is a zoonotic pathogen that infects birds, humans, and other mammals. Notably, recent studies suggested the human-to-human transmission of C. psittaci, and this pathogen also causes equine reproductive loss in Australia. Molecular studies in Australia to date have focused on and described clonal sequence type (ST)24 strains infecting horses, wild psittacine, and humans. In contrast, the genetic identity of C. psittaci strains from captive psittacine hosts is scarce. In 2022, C. psittaci was detected in the faeces of a healthy captive blue-fronted parrot (Amazona aestiva). Genomic DNA was extracted and underwent whole-genome sequencing. Here we report the 1,160,701 bp circular chromosome of C. psittaci strain BF_amazon_parrot13 and the 7,553 bp circular plasmid pCpsBF_amazon_parrot13. Initial in silico multi-locus sequence typing and ompA genotyping revealed that BF_amazon_parrot13 belongs to the clonal ST24 lineage and has an ompA genotype A. Further context involved the genomes of 31 published ST24 strains, utilising a single-nucleotide variant (SNV) based clustering approach. Despite temporal, host, and biogeographical separation, a core-genome SNV-based phylogeny revealed that BF_amazon_parrot13 clustered in a distinct subcluster with seven C. psittaci strains from equines in Australia (maximum pairwise distance of 13 SNVs). BF_amazon_parrot13 represents the first complete C. psittaci ST24 genome from a captive psittacine in Australia. Furthermore, by using whole-genome sequencing to coordinate surveillance, we can also learn more about the possible health risks and routes of chlamydia transmission among people, livestock, wild animals, and domesticated animals.


Assuntos
Chlamydophila psittaci , Doenças dos Cavalos , Papagaios , Psitacose , Animais , Humanos , Cavalos , Chlamydophila psittaci/genética , Tipagem de Sequências Multilocus/veterinária , Psitacose/veterinária , Psitacose/epidemiologia , Austrália , Mamíferos , Genômica
14.
Microbiol Spectr ; : e0461022, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36749064

RESUMO

Avipoxviruses are assumed to be restricted to avian hosts and are considered to be important viral pathogens that may impact the conservation of many vulnerable or endangered birds. Recent reports of avipoxvirus-like viruses from reptiles suggest that cross-species transmission may be possible within birds and other species. Most of the avipoxviruses in wild and sea birds remain uncharacterized, and their genetic variability is unclear. Here, cutaneous pox lesions were used to recover a novel, full-length Cook's petrelpox virus (CPPV) genome from a vulnerable Cook's petrel (Pterodroma cookii), and this was followed by the detection of immature virions using transmission electron microscopy (TEM). The CPPV genome was 314,065 bp in length and contained 357 predicted open-reading frames (ORFs). While 323 of the ORFs of the CPPV genome had the greatest similarity with the gene products of other avipoxviruses, a further 34 ORFs were novel. Subsequent phylogenetic analyses showed that the CPPV was most closely related to other avipoxviruses that were isolated mostly from South African bird species and demonstrated the highest sequence similarity with a recently isolated flamingopox virus (88.9%) in South Africa. Considering the sequence similarity observed between CPPV and other avipoxviruses, TEM evidence of poxvirus particles, and phylogenetic position, this study concluded that CPPV is a distinct candidate of avipoxviruses. IMPORTANCE Emerging viral disease is a significant concern with potential consequences for human, animal, and environmental health. Over the past several decades, multiple novel viruses have been found in wildlife species, including birds, and they can pose a threat to vulnerable and endangered species. Cook's petrel is currently listed as vulnerable. The threats to the species vary, but are, to a large degree, due to anthropogenic impacts, such as climate change, habitat loss, pollution, and other disturbances by humans. Knowledge of viral pathogens, including poxvirus of Cook's petrel is currently virtually nonexistent.

15.
Viruses ; 15(2)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36851528

RESUMO

Adeno-associated viruses (AAV) are important vectors for gene therapy, and accordingly, many aspects of their cell transduction pathway have been well characterized. However, the specific mechanisms that AAV virions use to enter the host nucleus remain largely unresolved. We therefore aimed to reveal the interactions between the AAV Cap protein and the nuclear transport protein importin alpha (IMPα) at an atomic resolution. Herein we expanded upon our earlier research into the Cap nuclear localization signal (NLS) of a porcine AAV isolate, by examining the influence of upstream basic regions (BRs) towards IMPα binding. Using a high-resolution crystal structure, we identified that the IMPα binding determinants of the porcine AAV Cap comprise a bipartite NLS with an N-terminal BR binding at the minor site of IMPα, and the previously identified NLS motif binding at the major site. Quantitative assays showed a vast difference in binding affinity between the previously determined monopartite NLS, and bipartite NLS described in this study. Our results provide a detailed molecular view of the interaction between AAV capsids and the nuclear import receptor, and support the findings that AAV capsids enter the nucleus by binding the nuclear import adapter IMPα using the classical nuclear localization pathway.


Assuntos
Sinais de Localização Nuclear , alfa Carioferinas , Suínos , Animais , Dependovirus/genética , Proteínas do Capsídeo , Núcleo Celular , Proteínas Nucleares
16.
Viruses ; 15(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36680183

RESUMO

Birds may act as hosts for numerous pathogens, including members of the family Chlamydiaceae, beak and feather disease virus (BFDV), avipoxviruses, Columbid alphaherpesvirus 1 (CoAHV1) and Psittacid alphaherpesvirus 1 (PsAHV1), all of which are a significant biosecurity concern in Australia. While Chlamydiaceae and BFDV have previously been detected in Australian avian taxa, the prevalence and host range of avipoxviruses, CoAHV1 and PsAHV1 in Australian birds remain undetermined. To better understand the occurrence of these pathogens, we screened 486 wild birds (kingfisher, parrot, pigeon and raptor species) presented to two wildlife hospitals between May 2019 and December 2021. Utilising various qPCR assays, we detected PsAHV1 for the first time in wild Australian birds (37/486; 7.61%), in addition to BFDV (163/468; 33.54%), Chlamydiaceae (98/468; 20.16%), avipoxviruses (46/486; 9.47%) and CoAHV1 (43/486; 8.85%). Phylogenetic analysis revealed that BFDV sequences detected from birds in this study cluster within two predominant superclades, infecting both psittacine and non-psittacine species. However, BFDV disease manifestation was only observed in psittacine species. All Avipoxvirus sequences clustered together and were identical to other global reference strains. Similarly, PsAHV1 sequences from this study were detected from a series of novel hosts (apart from psittacine species) and identical to sequences detected from Brazilian psittacine species, raising significant biosecurity concerns, particularly for endangered parrot recovery programs. Overall, these results highlight the high pathogen diversity in wild Australian birds, the ecology of these pathogens in potential natural reservoirs, and the spillover potential of these pathogens into novel host species in which these agents cause disease.


Assuntos
Doenças das Aves , Infecções por Circoviridae , Circovirus , Papagaios , Animais , Austrália/epidemiologia , Infecções por Circoviridae/veterinária , Filogenia , Biosseguridade , Animais Selvagens , Doenças das Aves/epidemiologia
17.
Viruses ; 14(11)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36423151

RESUMO

Spotty liver disease (SLD) causes substantial egg production losses and chicken mortality; therefore, it is a disease that concerns Australian egg farmers. Over the last few decades, much research has been conducted to determine the etiologic agents of SLD and to develop potential therapeutics; however, SLD still remains a major issue for the chicken industries globally and remained without the elucidation of potentially multiple pathogens involved. To help fill this gap, this study was aimed at understanding the viral diversity of bile samples from which the SLD-causing bacterium, Campylobacter hepaticus, has been isolated and characterised. The collected samples were processed and sequenced using high-throughput next-generation sequencing. Remarkably, this study found 15 galliform chaphamaparvoviruses (GaChPVs), of which 14 are novel under the genus Chaphamaparvovirus. Among them, nine were complete genomes that showed between 41.7% and 78.3% genome-wide pairwise similarities to one another. Subsequent phylogenetic analysis using the NS1 gene exhibited a multiple incursion of chaphamaparvovirus lineages, including a novel lineage of unknown ancestral history in free-range laying chickens in Australia. This is the first evidence of circulating many parvoviruses in chickens in Australia, which has increased our knowledge of the pathogen diversity that may have an association with SLD in chickens.


Assuntos
Infecções por Campylobacter , Hepatopatias , Doenças das Aves Domésticas , Animais , Galinhas , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Bile , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Viroma , Filogenia , Austrália/epidemiologia
18.
Microbiol Resour Announc ; 11(11): e0101722, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36301112

RESUMO

This study reports a novel complete genome of galliform chaphamaparvovirus 4, which was detected in the bile of a free-range laying chicken diagnosed with spotty liver disease. The genome was 4,367 bp in length, enclosed by two identical inverted terminal repeats. The detection of this novel chaphamaparvovirus represents a notable concern for the poultry industry in Australia.

19.
Sci Rep ; 12(1): 15053, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064742

RESUMO

Avipoxviruses are thought to be restricted to avian hosts and considered significant pathogens that may impact the conservation of many birds. However, reports of avipoxvirus-like viruses from reptiles suggest that cross-species transmission, within birds and other species, may be possible. The vast majority of avipoxviruses in wild birds remain uncharacterised and their genetic variability is unclear. Here, cutaneous pox lesions were used to recover a novel full-length crowpox virus genome from an Australian little crow (Corvus bennetti), followed by the detection of immature and intracellular mature virions using electron microscopy. The CRPV genome was 328,768 bp in length and contained 403 predicted open-reading frames. While 356 of the ORFs of CRPV genome had the greatest similarity with other avipoxviruses gene products, a further 47 ORFs were novel. Subsequent phylogenetic analyses showed that the CRPV was most closely related to other avipoxviruses isolated from passerine and marine bird species and demonstrated the highest sequence similarity with an albatrosspox virus (84.4%). Considering the sequence similarity observed between CRPV and other avipoxviruses and phylogenetic position, this study concluded that the CRPV to be a distinct available candidate of avipoxviruses.


Assuntos
Avipoxvirus , Doenças das Aves , Corvos , Infecções por Poxviridae , Animais , Austrália , Avipoxvirus/genética , Filogenia , Infecções por Poxviridae/veterinária
20.
Viruses ; 14(8)2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-36016389

RESUMO

While adenoviruses cause infections in a wide range of vertebrates, members of the genus Atadenovirus, Siadenovirus, and Aviadenovirus predominantly infect avian hosts. Several recent studies on avian adenoviruses have encouraged us to re-visit previously proposed adenovirus evolutionary concepts. Complete genomes and partial DNA polymerase sequences of avian adenoviruses were extracted from NCBI and analysed using various software. Genomic analyses and constructed phylogenetic trees identified the atadenovirus origin from an Australian native passerine bird in contrast to the previously established reptilian origin. In addition, we demonstrated that the theories on higher AT content in atadenoviruses are no longer accurate and cannot be considered as a species demarcation criterion for the genus Atadenovirus. Phylogenetic reconstruction further emphasised the need to reconsider siadenovirus origin, and we recommend extended studies on avian adenoviruses in wild birds to provide finer evolutionary resolution.


Assuntos
Infecções por Adenoviridae , Adenoviridae , Atadenovirus , Aviadenovirus , Siadenovirus , Adenoviridae/genética , Infecções por Adenoviridae/veterinária , Animais , Austrália , Aviadenovirus/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...